Monday, April 4, 2016

Creation of a Synthetic Organism with the Smallest Complement of Genes

The tools available to molecular biologists especially in regard to gene sequencing and assembly allow investigators to produce nucleotide sequences that incorporate specific genes and gene clusters into DNA created in-situ.  A team of investigators headed by Craig Venter from the J. Craig Venter Institute in La Jolla California in effect created a microorganism containing 473 genes (Syn 3.0).  The purpose of this investigation was to determine the minimal amount of genetic material required to sustain life as an autonomous organism and successfully reproduce. 



In 2010, Venter and his colleagues created an entire chromosome from the bacterium, Mycoplasma mycoides (this organism has only one chromosome) and demonstrated that this synthetic chromosome was completely functional.  They did this by stripping out the naturally occurring DNA from the mycoplasma, M. capricolum and replacing it with the synthetic chromosome.  The modified organism was called Syn 1.0 and with its complement of 901 genes was shown to be completely viable and capable of reproduction.

With this material in hand, the investigative group sought to assemble Syn 3.0 by methodically whittling down the DNA in Syn 1.0 to the smallest number of genes required to sustain life. The result of this painstaking work was Syn 3.0


What makes this current result so remarkable is that this organism is entirely new.  Of the 473 genes, 149 (31.5%) are of unknown function; therefore, additional work will focus on the discovery of the function of these apparently essential genes.  Syn 3.0 may prove to be an invaluable tool in understanding the evolution of life on planet earth.

No comments:

Post a Comment